

Catalyst Project FINAL Report

Grower Information					
Grower Name:	Daniel Pantovic				
Entity Name:	MD & Pantovic				
Trial Farm No/Name:	F4044, F1425, F1580				
Mill Area:	Tully Sugar Mill				
Total Farm Area ha:	282.72 На				
No. Years Farming:	30 +				
Trial Subdistrict:	Bilyana				
Area under Cane ha:	282.72 Ha (including fallow)				

Background Information

Aim: Evaluate the benefits of lignite in improving nutrient use efficiency for NPK in sugarcane.

Background: (Rationale for why this might work)

There has been a lot of research conducted in the horticultural sector with lignite to assist with the stabilization of nitrogen, as well as phosphorus and potassium in the soil profile, improving plant uptake and NUE.

Due to the nature of the amount of biomass produced by a sugarcane crop, the nutrient requirements for the whole crop is placed subsurface in a single pass, which has the potential for a quantity of nutrients to be lost to the environment through leaching or as a gas.

Potential Water Quality Benefit:

If the lignite, when coblended as a granule with Urea, is able to stabilize the nitrogen in the environment for a loger period of time that Urea alone, and improved NUE will be gained and the potential loss of nutrients to the environment will be reduced.

Expected Outcome of Trial:

A greater NUE for N, P and K, thorugh reduced fertilizer rates without loss of yield or mining of the soil.

Service provider contact: Charissa Rixon – T.R.A.P. Services

Where did this idea come from: Service provider

<u>Plan -</u> <u>Project</u> <u>Activities</u>	Date: (mth/year to be undertaken)	Activities :(breakdown of each activity for each stage)
Stage 1	Oct- Dec 2016	Identify suitable paddock
		Peg out trial and apply treatments
Stage 2	Jan- Sep 2017	Biomass & Tissue sampling 3, 6 and 9 months after application (MAA)
Stage 3	Sep – Dec 2017	Hand harvest of trial plots
		Commercial harvest of trial
		Soil Sampling from each plot
		Analyse and Report on Data
		Refertilize Trial
Stage 4	Jan- Sep 2018	Biomass & Tissue sampling 3, 6 and 9 months after application (MAA)
Stage 5	Sep – Dec 2018	Hand harvest of trial plots
_	-	Commercial harvest of trial
		Soil Sampling from each plot
		Analyse and report on Data
		Refertilize Trial
Stage 6	Jan- Sep 2019	Biomass & Tissue sampling 3, 6 and 9 months after application (MAA)
Stage 7	Sep – Dec 2019	Hand harvest of trial plots
		Commercial harvest of trial
		Soil Sampling from each plot
		Analyse and report on Data
		Refertilize Trial

Project Trial site details

Trial Crop:	Sugarcane
Variety:	Q208 (1R 2017 Harvest)
Rat/Plt:	
Trial Block	F4044 Blk 02B
No/Name:	
Trial Block Size Ha:	11.39 Ha
Trial Block Position (GPS):	18.1123°S 1459153°E
Soil Type:	Thorpe

NΝ

Block History, Trial Design:

Small Plot Trial – RCB Design.

10 treatments x 4 replications

410	409	408	407	406	405	404	403	402	401
T9	T10	T2	T1	T8	T7	T6	T3	T5	T4
310	309	308	307	306	305	304	303	302	301
T3	T6	T4	T5	T7	T1	T10	T2	T9	T8
210	209	208	207	206	205	204	203	202	201
T5	T7	T9	T3	T2	T4	T8	T1	T6	T10
110	109	108	107	106	105	104	103	102	101
T1	T8	T4	T10	T6	T3	T9	T2	T5	T7

Treatments:

- 1. 100% N P K BAU
- 2. 75% N (Lignite/Urea) 100% P K
- 3. 75% N (Urea) + 100% P K
- 4. 50% N (Lignite/Urea) 100% P K
- 5. 50% N (Urea) + 100% P K
- 6. 75% N (Lignite/Urea) 75% P K
- 7. 75% N (Urea) + 100% P K
- 8. 50% N (Lignite/Urea) 50% P K
- 9. 50% N (Urea) + 100% P K

10. UTC

Results:

2017 HARVEST RESULTS

Treatment		Clean Stick		Small Mill CCS		Sugar Yield	
		9MAF (t/ha)		9MAF (%)		9MAF (t/ha)	
1	100% N P K BAU	84.3	а	14.423	-	12.08	-
2	75% N (Lignite/Urea) 100% P K	80.9	ab	14.825	-	12.00	-
3	75% N (Urea) + 100% P K	83.0	ab	14.070	-	11.68	-
4	50% N (Lignite/Urea) 100% P K	82.7	ab	14.340	-	11.79	-
5	50% N (Urea) + 100% P K	73.6	abc	14.558	-	10.81	-
6	75% N (Lignite/Urea) 75% P K	79.4	ab	14.943	-	11.86	-
7	75% N (Urea) + 75% P K	83.0	ab	14.678	-	12.22	-
8	50% N (Lignite/Urea) 50% P K	78.6	ab	14.955	-	11.75	-
9	50% N (Urea) + 50% P K	70.5	bc	14.410	-	10.15	-
10	UTC	62.8	С	14.470	-	9.14	-
p-value (p=0.05)		0.0057		0.9860		0.2848	
LSD (p = 0.05)		10.42		N/A ¹		N/A ¹	

2018 HARVEST RESULTS

Treatment		Clean Stick		Small Mill CCS		Sugar Yield	
		9MAF (t/ha)		9MAF (%)		9MAF (t/ha)	
1	100% N P K BAU	52.6	ab	18.047	-	9.45	-
2	75% N (Lignite/Urea) 100% P K	59.6	а	17.459	-	10.42	-
3	75% N (Urea) + 100% P K	58.6	а	18.025	-	10.59	-
4	50% N (Lignite/Urea) 100% P K	53.4	ab	18.305	-	9.78	-
5	50% N (Urea) + 100% P K	44.4	bc	18.058	-	7.65	-
6	75% N (Lignite/Urea) 75% P K	45.1	bc	18.307	-	8.25	-
7	75% N (Urea) + 75% P K	50.3	abc	17.824	-	8.99	-
8	50% N (Lignite/Urea) 50% P K	47.1	bc	18.200	-	8.56	-
9	50% N (Urea) + 50% P K	46.5	bc	17.870	-	8.28	-
10	UTC	41.4	С	18.199	-	7.53	-
p-value (p=0.05)		0.0161		0.2819		0.2555	
LSD ($p = 0.05$)		9.81		N/A ¹		N/A ¹	

 $\overline{N/A^1}$ = Not Applicable due to a p-value > 0.05

Conclusions and comments

The first and second season of trials showed no significant difference between treatments for CCS and Sugar yield.

However a spatial ANOVA of Clean Stick showed that at the 2017 harvest, all treatments had a significantly higher cane yield compared to the untreated control, except for a 50% reduction in N or 50% reduction in NPK when there was no lignite present. Where lignite was present and there was a 50% reduction in N or NPK the yield was significantly higher than the untreated and not significantly different to the growers standard practice.

In 2018 a spatial ANOVA of the clean stick yield showed that, the untreated control had a significantly lower yield compared to the growers standard practice, a 25% reduction in N with or without lignite and a 50% reduction of N when lignite was present. A 50% reduction in N without Lignite and a 25% or 50% reduction in NPK with or without lignite had a statistically similar yield to the untreated control.

This trial showed that the addition of lignite with the Urea did assist in maintaining yields when only the nitrogen rates were reduced by 50%, however the yeild difference was not significantly different.

Advantages of this Practice Change:

The results from this trial suggests that lignite may assist with maintaining higher yields when nitrogen rates are reduced.

Disadvantages of this Practice Change:

The disadvantage of this practice change is we have not been able to source a commerciallhy available source that is suitable for application through a standard cane stool splitter for subsurface application

Will you be using this practice in the future: Not until a commercially available formulation suitable for application becomes available and further trials are conducted. However interested in following this further if product becomes commercially available at an affordable level.

% of farm you would be confident to use this practice : Nil