

Project Catalyst Trial Report

Dynamic Nutrient Planning - Getting Nitrogen Right in Time and Place

Grower Information		
Grower Name:	RACECOURSE PROJECTS PTY LTD	
Entity Name:	RACECOURSE PROJECTS PTY LTD	
Trial Farm	MKY- 04301A	
No/Name:		
Mill Area:	Racecourse Mill	
Total Farm Area ha:	260	
No. Years Farming:	N/A	
(Grower Experience)		
Trial Subdistrict:	Dawlish	

Trial Status

Completed

Author: Zoe Eagger (Farmacist). For further information contact Zoe on Mb. 0436 004 437.

Background Information

Aim:

- 1. To evaluate the *1622WhatIf?*™ tool as a robust scientific method for determining crop nitrogen (N) fertiliser requirements within field.
- 2. To determine potential N fertiliser input reductions by better understanding soil/crop/seasonal dynamics in application decision making.

Background:

When it comes to altering fertiliser rates on sugarcane crops, there is no single decision-making support tool. A team at CSIRO has developed the 1622WhatIf?™ App that is promoted as allowing farmers to evaluate the risks and benefits of changing N fertiliser applications. The App take a scenario approach, for example a grower may ask "What if I change my fertiliser rate, harvest date and/or fertilising date? How would that affect my crop yield and N losses?¹

The trial uses the CSIRO *1622Whatlf?™* App to model crop N fertiliser requirements for a large sugarcane block at Dawlish. Soil cores, field productivity history, irrigation practices and soil type were collected and provided as inputs to the *1622Whatlf?™* App. Based on the outputs of the model, a replicated field trial was established where N fertiliser inputs were varied annually according to the App's predicted requirements.

Crop N uptake, yield and sugar content measurements were collected in 2020 from four baseline N rates. Based upon crop performance data generated, 1622WhatIf?™ parameter inputs were refined, and new targeted treatments were applied.

Catchment Solutions is collecting water samples from each treatment to measure potential nutrient run off for the life of the trial.

Potential Water Quality Benefit:

A more robust decision support methodology is required to assist growers and their advisers in making more informed decisions about N fertiliser applications in sugarcane, particularly identifying scenarios (soil type constraints, seasonal constraints) which may result in reduced yield and determining an appropriate N rate reduction to support that yield potential. The trial supports N rate determination that responds to seasonal conditions and N loss risk potential. This approach mitigates against losses to the environment through increased N use efficiency (NUE) and maximising crop yield potential.

Expected Outcome of Trial:

Validation of the 1622WhatIf?™ model by evaluating the yield and water quality outcomes of adopting the model's recommended annual N fertiliser application rates. A decision support tool that provides greater confidence to growers and advisors that N application rate recommendations are reflective of potential crop yield and seasonal conditions

Service provider contact: Farmacist Pty Ltd.

Where did this idea come from: Grower/Farmacist

Plan - Project Activities						
	Date:	Activities:				
Stage 1	October 2019	 Assess trial site soil characteristics EM map the paddock Soil samples and cores for nutrient analysis 				
Stage 2	December 2019	Develop trial plan and apply fertiliser treatments.				
Stage 3	January 2020	Catchment solutions install KP water samplers				
Stage 4	October 2020	 Crop N uptake assessments Trial harvest - yield performance assessments 1622Whatlf?™ model re-runs with trial data input New treatments determined in response to year 1 results 				
Stage 5	November 2020	 New altered fertiliser rates applied Catchment solutions installed KP's water samplers. 				
Stage 6						
Stage 7						

Project Trial site details		
Trial Crop:	Sugarcane	
Q240 1st ratoon	Q240 1st ratoon	
Trial Block No/Name:	2-1	
Trial Block Size Ha:	11.2 ha	
Trial Block Position (GPS):	149° 9'43.65"E, -21°22'1.70"S	
Soil Type:	Sunnyside class A sodosol, silty clay loam over grey heavy clay subsoils.	

Block History, Trial Design

Trial Layout

The trial was located in Dawlish, QLD. The soil type at this site is a Sunnyside soil which is a grey duplex soil, characterised by often acidic topsoils that have a high cation exchange capacity, low organic carbon values, and grey well drained clay with many yellow mottles at depth.

The trial was established with four treatments, each with four 0.7ha replicates, and a control (Figure 1). The initial treatment rates were determined by using the industry's nutrient guidelines, the SIX EASY STEPS (6ES), and +/- the recommended rates.

The application rates of N were varied annually for each treatment dependent on the 1622WhatIf?™ recommended rate.

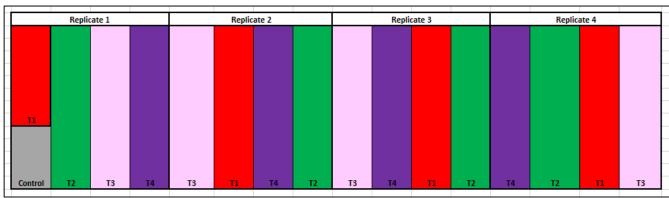


Figure 1: Trial layout of treatments and replicates

The 2019 N application rates applied are outlined in Figure 2. These rates where determined as the baseline:

- Treatment 1- -30% 6ES rate
- Treatment 2- -15% 6ES rate
- Treatment 3- 6ES rate
- Treatment 4- Typical grower practice

Control – 0kg N/ha
Treatment 1 – 110 kg
Treatment 2- 130 kg
Treatment 3 – 6ES 150kg
Treatment 4- 170 kg

Figure 2: Treatments of December 2019

The 1622Whatlf?TM App was used to alter the rates applied after the 2020 harvest. Two dunder brews where used in order to maintain the same phosphorus, potassium and sulfur quantity across the four treatments, with N being the only variable.

Table 1 outlines the 2020 applications determined by the 1622Whatlf? $^{\text{TM}}$ App model, with consideration for forecasted local climate conditions and crop performance.

PCGBRF202090 March 2021

Table 1: Rationale for 2020 post-harvest N application rate

Treatment	N rate (kgN/ha)	Rational
1	110	WhatIf?™ App determined minimal yield risk between 80 kg/ha and 110 kg/ha.
2	80	No yield impact previous season between lowest and highest treatment. Given the crop was cut late, fertilised late and low yielding (60 t/ha average) the rate was reduced to 80 kg/ha
3	150	150 kg/ha is the Six Easy Steps rates, this will stay constant throughout the trial
4	180	Annual forecast predicts higher than average rainfall. Typical grower practice is to increase N rates to mitigate against potential N losses (denitrification & run-off) and increased potential yield.

Catchment Solutions water quality sampling

KP samplers, developed by BBIFMAC, were used to collect end of furrow run-off. The KP sampler is considered cheaper and simpler to run, as well as provide data more accepted as representing farm paddock run-off from rainfall events. The water quality assessment involved the use of KP samplers to collect end of paddock run-off following extensive rainfall events.

Figure 3 KP water sampler on the trial site

Samples were collected over the 2020 wet season on the:

- 28th January 2020
- 17th February 2020
- 27th February 2020
- 5th March 2020

Water quality analysis included:

- Suspended solids
- Nutrients: N and phosphorus (dissolved and total)

Results

Yield results 2020

2020 yield results indicated no significant difference in tonnes of cane or tonnes of sugar per hectare (tC/ha, tS/ha) between the four treatments (Figures 4 &5). The paddock was cut and fertilised late in 2019, restricting the crop's potential growth.

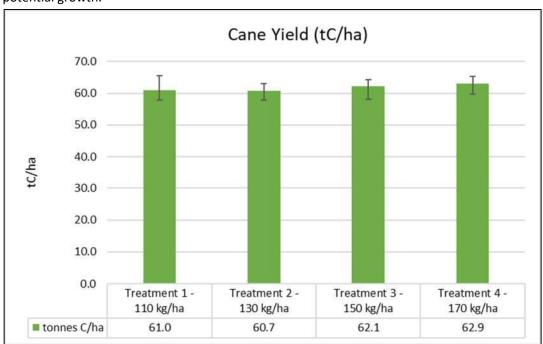


Figure 4 Cane Yield (tC/ha) of 2020 treatments.

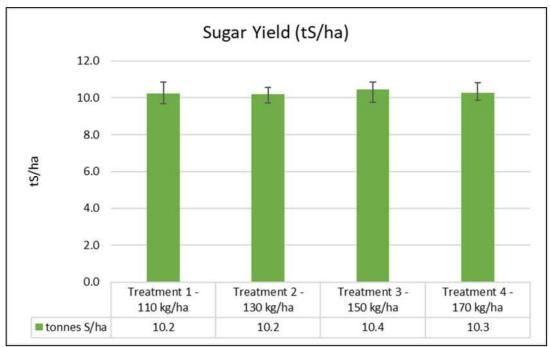


Figure 5 Sugar Yield (tS/ha) of 2020 treatment

NUE results indicated that Treatment 1 (110 kgN/ha) resulted in the highest efficiency (Figure 6). The grower saved 60 kgN/ha but yielded 1.9 tC/ha and 0.1 tS/ha higher than Treatment 4 (170kgN/ha), equating to 67% improvement in NUE by using the lower N rate. However, the extent of this result must be considered with some caution because the reduced growing period. The significance of this result cannot be determined until the 2021 harvest results are collected and can be statistically compared on a daily growth rate in a determined period.

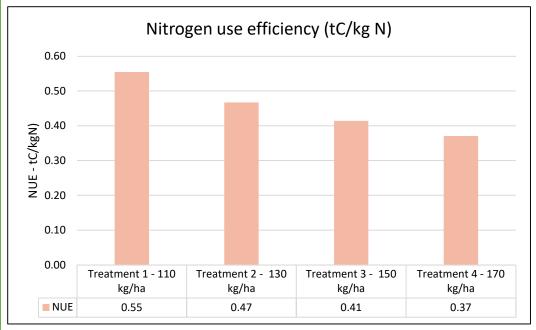


Figure 6 Nitrogen use efficiency (tC/kg N) for 2020 harvest.

Leaf samples 2020

Leaf sampling results show little difference between N, phosphorus, and sulphur percentage in the leaf, however, potassium levels increased as N levels decreased (Figure 7). The control had similar, if not higher, nutrient content compared to the fertilised treatments.

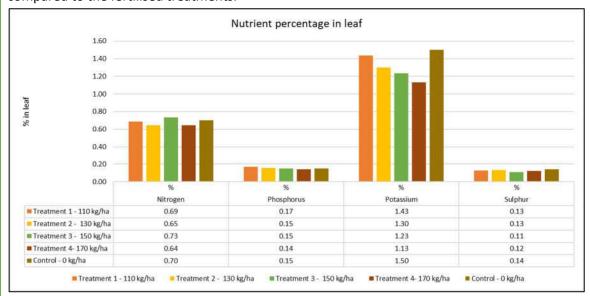


Figure 7 Leaf sample nutrient results 2020

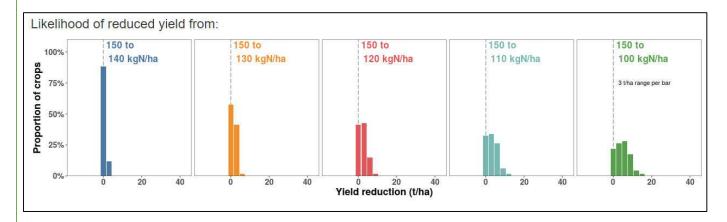
PCGBRF202090 March 2021

2020 Catchment Solutions water sample results

The initial assessment determined that the Dissolved Inorganic Nitrogen (DIN) estimate run-off loads increased in line with the increasing N Treatments, with Treatment 4 (170 kgN/ha) having the highest paddock run-off at 0.228 kg N/ha). There were no changes in mass loads for the paddock run-off for both the DIN and Particulate N. There were no changes in mass loads for the paddock run-off for Total Phosphorous, while Particulate Phosphorous had a more elevated mass load in the replicates of Treatment 3 (150kgN/ha), although this may be associated with factors outside of the trial assessment.

Figure 8 2020 trial harvest

Figure 9 Day of 2020 trial harvest



2020 1622WhatIf?™ Analysis

The results of the 1622WhatIf?TM better informed the N application decisions of 2020. The low risk of yield loss between nitrogen rates was consistent with the minimal yield differences between harvested treatments.

Conclusions and comments
This project in now complete under this round of funding, however the trial will be continued pending additional funding.
This trial will be harvested in 2021 with the new treatment applications.
Advantages of this Practice Change: N/A
Disadvantages of this Practice Change: N/A
Will you be using this practice in the future:
N/A % of farm you would be confident to use this practice:
% OF FARM YOU WOULD BE CONTIDENT TO USE THIS PRACTICE:

N/A

