Project Catalyst

Multi-Species Fallow Economics: 2019-2020 Case Study

Herbert growers: Lawrence & Hayden Di Bella

Growers participating in Project Catalyst trials worked with economists from the Department of Agriculture and Fisheries (DAF) to identify costs and benefits of the trials. In this study, Lawrence and Hayden Di Bella and Herbert Cane Productivity Services (HCPSL) trialled a number of legume and multi-species fallows on his farm.

The objective of the trial was to compare the performance of sugarcane following different fallow treatments. Lawrence and Hayden aim to improve their soil health through exploring the possibility of applying less N following a legume or multi-species fallow. To evaluate this opportunity, various legume and multi-species fallows (including a bare fallow) were trialed to compare the yield, sugar and profitability of the subsequent sugarcane crop. The yield, sugar, variable costs and gross margins for the fallow and plant cane for each treatment are compared.

Trial design

The randomised complete bock trial was established with 20 treatments in 2018 (19 legume or multi-species fallow treatments and a single bare fallow treatment). Each treatment included three replicates. Table 1 shows the fallow treatment descriptions while Figure 1 presents a map of the trial layout. Following the fallow, sugarcane was planted on the trial block in 2019 and harvested in 2020. All treatments received 35 kg/ha of nitrogen (N).

¹ Mix 1 – Cowpea (Ebony), Sunn Hemp and Rongai Lablab
² Mix 2 – Sunflower, Cowpea (Ebony), Soyabean (Leichardt), Jap Millet, Tropical Mustard, Tillage Raddish
³ Mix 3 – Soybean (Leichardt), Cowpea (Ebony), Cowpea (Meringa), Sunn Hemp, Rongai Lablab

Key findings

- There were no significant differences in cane or sugar yield between the treatments (p>0.05).
- While there were large differences in gross margin between treatments, these were not statistically significant due to the high variability within treatments (p>0.05).

Note: T4 is excluded from the results due to the canola crop failure (likely due to a seasonal timing issue).

Treatment	Fallow Description				
T1	Bare Fallow				
T2	Soy Leichardt				
Т3	Cowpea Ebony				
T4	Canola				
T5	Jap Millet				
Т6	Sunn Hemp				
T7	Sunflower Greystripe				
Т8	Sweet Potato				
Т9	Velvet Bean Dominator				
T10	Tropical Mustard				
T11	Burgundy Bean				
T12	Pigeon Pea				
T13	Tillage Raddish				
T14	Rice				
T15	Soybean Mossman				
T16	Mix 1 - Nematode Resistant ¹				
T17	Mix 2 - SRA Mix ²				
T18	Mix 3 - High Performer ³				
T19	Mix 4 - Forbes Mix ⁴				
T20	Mix 5 - Traditional Mix ⁵				
T21	Soybean Kuranda				

Table 1: Description of Fallow treatment

⁴ Mix 4 – Sunn Hemp, Soybean (Leichardt), Pigeon Pea, Cowpea (Ebony), Sunflower, Jap Millet, Tillage Raddish.

⁵ Mix 5 – Cowpea (Ebony), Rongai Lablab

Rep 1		Rep 2			Rep 3			
T2	T17	T9	T18	T4	T2	T17	T10	T19
T5	T11	T18	T6	T17	T5	T14	T18	T8
T14	T12	T6	T20	T12	T14	T5	T13	T4
T13	T 7	T20	T1	T15	T8	T1	T11	T12
T15	T8	T4	T3	T7	T13	T9	T7	T20
T16	T10	T19	T10	T16	T11	T15	T16	T3
T1	T3	T21	T21	T9	T19	T2	T6	T21

Figure 1: Trial Layout (source: HCPSL)

Agronomics

Figure 2 presents the plant cane yield data. Average yields ranged from 95 t/ha to 108 tc/ha (for all treatments) and was highest in the Mix 4 (T19) treatment, but this difference was not significant (p>0.05).

Figure 2: Sugarcane yield results (t/ha)

Figure 3 shows the average CCS for each treatment. The average CCS ranged from 9.7 to 11.6 units. However, there were no statistically significant differences in CCS between treatments.

Figure 3: Average mill CCS results (units)

Figure 4 presents the sugar yield from each treatment. Similarly, there were no significant differences in sugar yield between treatments (p>0.05).

Figure 4: Sugar yield results (Ts/ha)

Costs

Fallow costs are presented in Figure 5. Land preparation and liming costs were the same for all treatments. The Bare Fallow (T1) had no planting or legume costs but incurred higher weeding costs due to two additional herbicide applications required for the fallow period. Except for seed costs, both planting and weed control costs were the same for all fallow crop treatments. The highest seed cost was for the Sunn Hemp (T6) at \$326/ha and the lowest was for the Tropical Mustard (T10) at \$42/ha.

T21

■ Liming ■ Land Prep. ■ Planting ■ Weeding ■ Seed

Figure 5: Fallow costs per treatment (\$/ha)

The variable costs for the plant cane are presented in Figure 6. The difference in treatment variable costs were due to differences in harvesting costs and levies, both linked to yield

variations. All other variable costs were the same between treatments.

Planting		Fertili	and prep.				
Weed control		Disease	Harvesting				
Levi	es						
T21	\$873	\$275	\$910	\$2,478			
T20	\$873	\$275	\$880	\$2,446			
T19	\$873	<mark>\$275</mark>	\$932	\$2,501			
T18	\$873	<mark>\$275</mark>	\$834	\$2,397			
T17	\$873	\$275	\$891	\$2,457			
T16	\$873	\$275	\$836	\$2,399			
T15	\$873	<mark>\$275</mark>	\$783	\$2,343			
T14	\$873	\$275	\$835	\$2,398			
T13	\$873	\$275	\$836	\$2,398			
T12	\$873	\$275	\$875	\$2,440			
T11	\$873	\$275	\$854	\$2,419			
T10	\$873	\$275	\$892	\$2,459			
Т9	\$873	\$275	\$854	\$2,418			
Т8	\$873	<mark>\$275</mark>	\$864	\$2,429			
T7	\$873	<mark>\$275</mark>	\$856	\$2,420			
Т6	\$873	\$275	\$818	\$2,379			
T5	\$873	<mark>\$275</mark>	\$872	\$2,438			
Т3	\$873	\$275	\$903	\$2,470			
T2	\$873	\$275	\$825	\$2,387			
T1	\$873	\$275	\$820	\$2,382			
\$	0	\$1,000	\$2,000	\$3,000			
Variable costs (\$/ha)							

Figure 6: Variable costs per treatment, plant cane (\$/ha)

Gross margins

Gross margin results (revenue less variable costs) are presented in Figure 7 for the plant cane. Gross margins varied across treatments with Tropical mustard (T10) having the highest overall gross margin (+\$487/ha) and the Soy Leichardt (T2) having the lowest (-\$176/ha). However, these differences were not statistically significant (p>0.05) and could therefore not be attributed to the various fallow treatments.

Great Barrier Reef Foundation

Project Catalyst is funded by the partnership between the Australian Government's Reef Trust and the Great Barrier Reef Foundation, and the Coca-Cola Foundation with support from WWF-Australia and Catchment Solutions Pty Ltd.

Figure 7: Plant cane gross margin (\$/ha)

Conclusion

Lawrence and Hayden wanted to assess both the agronomic and economic performance of sugarcane following different legumes, multi-species crops and a bare fallow.

Differences in average yield, CCS, sugar and gross margins were not statistically significant (p>0.05) due to the high variability within treatments. Mean differences could, therefore, not confidently be attributed to the treatment effect.

Benefits from legume and multi-species fallows are expected to improve soil health over the longer-term. Noticeable improvements in sugarcane production and profitability might therefore require a longer trial period to accurately quantify production impacts. This would improve the understanding of fallow treatment impacts on sugarcane production and economics. Utilising a different trial design concept for the randomisation of replicates, such as a spatial design, would improve the layout and better account for variability. More replicates would also be beneficial given the variability in the data.

Note: The trial results are specific to this grower, paddock and prevailing conditions.

We acknowledge the contribution made by Soil CRC in supporting this trial, HCPSL in the collection of trial data used in this publication, and Angela Anderson (DAF) for the statistical analysis and guidance.

For more information on the economic analysis, please contact DAF: Tich Pfumayaramba - Ph: (07) 3330 4507 Email: <u>Tichaona.Pfumayaramba@daf.qld.gov.au</u>

For more information on the agronomic results, please contact Herbert Cane Productivity Services (HCPSL): Megan Zahmel – Ph: (07) 4776 1808 Email: <u>mzahmel@hcpsl.com.au</u>

Publication date: July 2021

Project Catalyst is funded by the partnership between the Australian Government's Reef Trust and the Great Barrier Reef Foundation, and the Coca-Cola Foundation with support from WWF-Australia and Catchment Solutions Pty Ltd.